Fuzzy adaptive search method for parallel genetic algorithm with island combination process
نویسندگان
چکیده
Genetic algorithms (GAs) pose several problems. Probably, the most important one is that the search ability of ordinary GAs is not always optimal in the early and final stages of the search because of fixed GA parameters. To solve this problem, we proposed the fuzzy adaptive search method for genetic algorithms (FASGA) that is able to tune the genetic parameters according to the search stage by the fuzzy reasoning. In this paper, a fuzzy adaptive search method for parallel genetic algorithms (FASPGA) is proposed, in which the high-speed search ability of fuzzy adaptive tuning by FASGA is combined with the high-quality solution finding capacity of parallel genetic algorithms. The proposed method offers improved search performance, and produces high-quality solutions. Moreover, we also propose FASPGA with an operation of combining dynamically sub-populations (C-FASPGA) which combines two elite islands in the final stage of the evolution to find a better solution as early as possible. Simulations are performed to confirm the efficiency of the proposed method, which is shown to be superior to both ordinary and parallel genetic algorithms.
منابع مشابه
A hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملA SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM
In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm deals with the issue ofcontrolling the ex...
متن کاملA New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملDynamic Modeling and Controller Design of Distribution Static Compensator in a Microgrid Based on Combination of Fuzzy Set and Galaxy-based Search Algorithm
This paper presents a nonlinear controller for a Distribution Static Compensator (DSTATCOM) of a microgrid incorporating the Distributed Generation (DG) units. The nonlinear control has been designed based on partial feedback linearization theory and Proportional-Integral-Derivative (PID) controllers try to adjust the voltage and trace the output. This paper has proposed a combination of a fuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 41 شماره
صفحات -
تاریخ انتشار 2006